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Introduction
The aim of this assignment is to efficiently compute various factors given a train network as a
graph. This report will highlight some subtleties regarding data structures and algorithm choices in
pursuit of efficiency, as well as a comparison/justification with respect to alternative options. The
report will also encompass the theoretical and experimental (real life) computational complexity of
the implementation.

Representing the London Railway Network
In order to implement the railway structure, it seemed intuitive to represent the graph, stations and
locations using classes. These classes provide a wrapping interface for implementing the API.

● A location object stores longitude and latitude.
● A station object has a name, a location object, and a dictionary of neighbouring stations.

The dictionary has entries as such;  stationName: (distanceToStation, railwayLine).
● The station graph itself is a dictionary of station objects, and has entries as such -

stationName: stationObject. Size is an instance variable for O(1) size lookup.

The reasoning behind using dictionaries was simply for O(1)♱ lookup of stations based on their
name, this is something we heavily depend on, therefore a crucial factor in maintaining
performance. Distances to neighbouring stations are computed as each station is initialised, this is
a compromise for some memory, but the reward is never having to compute distances at runtime
again, thus distance lookups between two neighbouring stations is O(1).

Calculating distance between two locations
Assuming the earth is a perfect sphere, the Haversine formula determines the distance between
two points on a sphere traveling along the surface. This is close to the true distance between
stations, variations in curvature of the earth are not noticeable at the scale of a metropolis.
Given two location objects, we extract their longitude and latitude, and apply functions sequentially
from the standard math library in order to reproduce the Haversine formula and thus calculate our
answer in metres. This is converted to miles and rounded to 4 dp.

Some Important Metrics: Time Complexities, with Amortized worst cases
Data Structure Operation Average Case Worst Case

Dict Check Membership O(1) O(n)
Get/Set Item O(1) O(n)

Iterate all keys/values O(n) O(n)
Set Check Membership O(1) O(n)

Insert Item O(1) O(n)
List Append O(1) O(1)

Get/Set Item O(1) O(1)
Iterate all O(n) O(n)

Check Membership O(n) O(n)
Take slice O(k) O(k)

Deque Append left/right O(1) O(1)
Pop left/right O(1) O(1)

Heapq Push/Pop O(log n) O(log n)

♱ At multiple times during the analysis we will mention dict/set operations which have average
performance O(1), but keep in mind that it may deteriorate to O(n) upon collisions when hashing.

LoadStationsAndLines: Theoretical Time Complexity1

We begin by iterating each station from the londonstations.csv file, creating a station object
and its location object before adding that to our stations dictionary. Creating a location object and
station object is both constant time, inserting our station object into a dict has average complexity
O(1)♱. Thus our theoretical average and worst case case would be Θ(S).

Then in order to create all connections between stations, we take each pair of connected stations
and calculate the distance between them in constant time. We then create an outward connection
for both stations to its paired station, since this is an undirected weighted graph; thus having to call
addRoute twice giving a complexity of Θ(R)♱. Dictionaries perform much better than lists because

1 For this report we will assume that S and R when mentioning complexities, both experimentally and theoretically, refers to the
number of stations and routes (i.e. Vertices and Edges)



we do not need to linearly scan all stations in the graph to fetch a station object. In the average
case we will be able to lookup a station in constant time given no collisions.

Thus this produces an overall theoretical average and worst case Θ(S) + Θ(R) = Θ(S+R), but may
take O(S2) + O(R2) = O(S2+R2) for initialising our data structures if collisions occur at every stage.
This is very unlikely and will be as a result of python’s implementation of dicts. Keeping in mind
that the O(R) itself may vary between2 O(S) and O(S2) which can be interpreted as the worst case.

LoadStationsAndLines: Experimental Time Complexity (Images full size in references)3

Figure 1 & 2 , Each time result is the average of 10 initialisations. Sparse Graph bounded between runtime
1e-5(S) and 6e-3(S). Thus our average case has linear growth. Dense Graph bounded between runtime
1e-3(S) and 1e-9(S2) + 2.2e-3(S), as mentioned - quadratic growth.

MinStops: Theoretical Time Complexity
In order to find the minimum number of stops connecting two stations, the logical solution is to
utilise a queue based Breadth First search, we start at the fromStation which has a distance of
0 hops to itself and discover stations in an increasing number of hops from where we are. We
would visit each node at least once, and mark it as visited which has O(S)♱. We would also have to
explore every outgoing edge and add unmarked stations to our queue (pushing/popping from the
queue is O(1)) which takes O(R)♱. As we discover every station and its routes, we construct a
dictionary that maps each station to its distance from fromStation in hops which takes O(S).
This assumes that there are no collisions when hashing into our dict♱. To then find the number of
hops connecting us to toStation, we simply run a get operation to fetch the stored value.

Instead of using a normal dict, which we would have to initialise by iterating each station which is
O(S), we instead use a default dict that means unless we state otherwise; every station has a
default distance of -1 from fromStation thus we do not need to have any initialisation of our dict.
In the average case, our dictionary set and get operations would take O(1)♱ thus resulting in O(S)
+ O(R) = O(S+R). Again, the worst case arises in the condition that |R| = |S2|, thus giving worst
case O(S) + O(S2) = O(S2) for a dense graph. This may deteriorate to O(S2+R2)♱.

MinStops: Experimental Time Complexity

3 Sparse refers to a graph (experimental testing purposes) in which every station has 2-5 routes, whereas dense graphs have
stations with S2/2 to S2 routes per station.

2 Assuming a station has at least one connected station, which is a given for a train network.



Figure 3 & 4 , Each time result is the average of minStops between 100 random stations. Sparse Graph
bounded between runtime 2.5e-7(S1.29) and 3e-7(S1.29). Thus our average case has growth reflective of
(R+S) since 2S ≤R≤5S . Dense Graph bounded between runtime 2e-7(S2) and 1e-7(S2), as expected-
quadratic growth.

MinDistance: Theoretical Time Complexity
In order to find the minimum distance connecting two stations, it seemed intuitive to use Djikstra’s
shortest path algorithm. This is implemented using a binary heap which shines in its efficiency for
sparse graphs. This is a clear choice since a dense graph, i.e. one where each station connects to
many others is inefficient in the real world, each station in our network connects to ~ 2-4 others.

We track all visited stations using a set, which allows us to track in O(1)♱, which is clearly faster
than a list which has Θ(S) for checking membership. We track distances to stations from
fromStation using a dict which has set/get in O(1)♱. Again the use of defaultdict allows to imply
all distances are initially infinite without having to initialise via iterating all stations which has O(S).
Each time the main loop runs, we extract a station from the heap and its distance, starting with
fromStation which has a distance of 0 to itself. There may be up to S stations in the queue, thus
giving O(S) and extracting from the heap4 takes O(log S) ignoring previously visited stations in
O(1)♱. Thus the main loop can be completed in O(S log S). We then consider all the unvisited
connections of the current station and determine whether we can change it to a shorter route, and
update our dict in O(1)♱, if we must again push to the heap it can be done in O(log S). We must
consider all edges as such, giving O(R) deteriorating to O(S2) for a dense graph (which is why we
can safely use it, as our graph has |R| << |S2|) and thus this step can be completed in O(R log S).
Thus O(R+S) * O(log S) gives us the average and worst case complexity of O(R log S).

Using an unordered array, our overall time complexity would have shot up to O(S2) since popping
the minimum priority station would have taken O(S) via a linear scan. We can safely use a heap as
R log S << S2 in our sparse graph. Djiktra’s is dominated by operations on the priority queue.
I opted against using A star for the reason that the heuristic would heavily depend upon calculating
the distance to toStation to judge the cost traversing between nodes, which involves multiple
floating point and mathematical operations and may be severely taxing to a system.

MinDistance: Experimental Time Complexity

Figure 5 & 6 , Each time result is the average of minDistance between 100 random stations. Sparse Graph
bounded between runtime 3e-6(R log S) and 5e-6(R log S). Thus our average case has linearithmic growth.
Dense Graph bounded between runtime 1.5e-7(S2 log S) and 2.5e-7(S2 log S), as expected since R ≈ S2.

NewRailwayLine: Theoretical Time Complexity
To construct the new railway line we begin by constructing a smaller graph of only the relevant
stations. This is a graph, where each station connects to every other station. We take every station
from the list and make a copy of it, ignoring its connections which can be completed in Θ(SL

5).
Grabbing a station from the graph takes O(1)♱ and hence grabbing its location object also takes
O(1)♱. We iterate each station which takes Θ(SL) and make a copy of inputList excluding the
current station which can be completed in Θ(SL) since we splice up until the station and after the
station (1, 2, …, k-1 and k+1, k+2, …, n). We then iterate every station in the sublist, Θ(SL) and

5 Note that SL is the number of stations in the inputList, likewise RL is the number of routes.

4 Keeping in mind that Djikstra’s observes the smallest distances first, disregarding whether they lead towards the destination or
not.



connect it to our current station via addRoute which takes O(1)♱. Thus we can construct this
temporary graph in O(SL) + O(SL

2) = O(SL
2). This is just a nested for loop.

Now that we have such a graph, we can construct its minimum spanning tree using a lazy Prim’s
algorithm. We also construct an unconnected (initially) graph with copies of the stations and their
locations which takes Θ(SL)6. We track the visited stations using a set for O(1)♱ membership
checking, and again use a min heap to view routes in order of smallest distance. While there are
routes we have not considered, Θ(RL) we pop a route of the min heap which takes O(log RL) 7. We
ignore routes we have considered already O(1)♱. For every route we add it to our graph which
takes O(1)♱. If either of the two stations it connects are unvisited then we visit them, and push their
outgoing routes to our priority queue and mark them as visited. This step takes O(RL log SL). We
also keep track of the last station we popped, and store that as a variable which takes O(1). Thus
we can find the MST in O(RL log SL) + O(SL log SL) = O(RL log SL).

Now that we have found the MST, we can simply traverse the MST starting at the final station
which we popped from the priority queue from using Depth First search. We start at the given
node, and add it to the set of visited stations O(1)♱ and the ordered list with O(1). We then
recursively travel as far from that station using the first available route until we can no longer, and
backtrack once we have exhausted the unvisited stations down that path. This stage takes O(SL +
RL) at most. We maintain the visited set and ordered list separately because membership checking
takes O(1) in sets but our API demands we return a list, thus converting our set to list would carry
a cost of O(SL). We can compromise on some space and simply maintain the list in parallel.

Thus, this gives a complexity of O(SL
2) + O(RL log SL) + O(SL + RL). Thus O(SL

2)

NewRailwayLine: Experimental Time Complexity

Figure 7 & 8 , Each time result is the average of 10 new railway lines being added. Each of these railway
lines consists of randomly chosen stations. Sparse Graph bounded under 2e-5(S2). Thus our computational
complexity grows as expected (Quadratic). Dense Graph could not be run past about 2000 stations due to
memory constraints and sparse Graph could not be pushed past 10000 stations due to time constraints.

7 Thus far we have O(SL log SL)
6 Similar to as we have done above
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